Core 4 Calculus Questions

2 A curve is defined by the parametric equations

$$x = 3 - 4t \qquad y = 1 + \frac{2}{t}$$

- (a) Find $\frac{dy}{dx}$ in terms of t. (4 marks)
- (b) Find the equation of the tangent to the curve at the point where t = 2, giving your answer in the form ax + by + c = 0, where a, b and c are integers. (4 marks)
- (c) Verify that the cartesian equation of the curve can be written as

$$(x-3)(y-1) + 8 = 0$$
 (3 marks)

- 6 (a) Express $\cos 2x$ in the form $a\cos^2 x + b$, where a and b are constants. (2 marks)
 - (b) Hence show that $\int_0^{\frac{\pi}{2}} \cos^2 x \, dx = \frac{\pi}{a}$, where a is an integer. (5 marks)
- **8** (a) Solve the differential equation

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -2(x-6)^{\frac{1}{2}}$$

to find t in terms of x, given that x = 70 when t = 0. (6 marks)

(b) Liquid fuel is stored in a tank. At time t minutes, the depth of fuel in the tank is x cm. Initially there is a depth of 70 cm of fuel in the tank. There is a tap 6 cm above the bottom of the tank. The flow of fuel out of the tank is modelled by the differential equation

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -2(x-6)^{\frac{1}{2}}$$

- (i) Explain what happens when x = 6. (1 mark)
- (ii) Find how long it will take for the depth of fuel to fall from 70 cm to 22 cm. (2 marks)

5 A curve is defined by the equation

$$y^2 - xy + 3x^2 - 5 = 0$$

- (a) Find the y-coordinates of the two points on the curve where x = 1. (3 marks)
- (b) (i) Show that $\frac{dy}{dx} = \frac{y 6x}{2y x}$. (6 marks)
 - (ii) Find the gradient of the curve at each of the points where x = 1. (2 marks)
 - (iii) Show that, at the two stationary points on the curve, $33x^2 5 = 0$. (3 marks)
- 7 Solve the differential equation

$$\frac{dy}{dx} = 6xy^2$$

given that y = 1 when x = 2. Give your answer in the form y = f(x). (6 marks)

1 A curve is defined by the parametric equations

$$x = 1 + 2t$$
, $y = 1 - 4t^2$

- (a) (i) Find $\frac{dx}{dt}$ and $\frac{dy}{dt}$. (2 marks)
 - (ii) Hence find $\frac{dy}{dx}$ in terms of t. (2 marks)
- (b) Find an equation of the normal to the curve at the point where t = 1. (4 marks)
- (c) Find a cartesian equation of the curve. (3 marks)
- 8 (a) (i) Solve the differential equation $\frac{dy}{dt} = y \sin t$ to obtain y in terms of t. (4 marks)
- 5 The point P(1, a), where a > 0, lies on the curve $y + 4x = 5x^2y^2$.
 - (a) Show that a = 1. (2 marks)
 - (b) Find the gradient of the curve at P. (7 marks)
 - (c) Find an equation of the tangent to the curve at P. (1 mark)

6 A curve is given by the parametric equations

$$x = \cos \theta$$
 $y = \sin 2\theta$

- (a) (i) Find $\frac{dx}{d\theta}$ and $\frac{dy}{d\theta}$. (2 marks)
 - (ii) Find the gradient of the curve at the point where $\theta = \frac{\pi}{6}$. (2 marks)
- (b) Show that the cartesian equation of the curve can be written as

$$y^2 = kx^2(1-x^2)$$

8 (a) Solve the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sqrt{1+2y}}{x^2}$$

given that y = 4 when x = 1.

- (6 marks)
- (b) Show that the solution can be written as $y = \frac{1}{2} \left(15 \frac{8}{x} + \frac{1}{x^2} \right)$. (2 marks)

Core 4 Calculus Answers

2(a)	$\frac{dy}{dt} = \frac{-2}{t^2} \qquad \frac{dx}{dt} = -4$ $\frac{dy}{dx} = \frac{dy}{dt} \cdot \frac{1}{\frac{dx}{dt}} = \frac{1}{2t^2}$	M1A1 m1 A1F	4	Use chain rule Follow on use of chain rule (if $f(t)$) Or eliminate $t: M1 \ y = f(x)$ attempt to differentiate M1A1 chain rule
(b)	$t = 2 m_{\rm T} = \frac{1}{8}$	B1F		A1F reintroduce t follow on gradient (possibly used later)
	$x = -5 \qquad y = 2$	B1		
	$t = 2 m_{T} = \frac{1}{8}$ $x = -5 y = 2$ $y - 2 = \frac{1}{8}(x+5)$ $x - 8y + 21 = 0$ $x - 3 = -4t y - 1 = \frac{2}{t}$ $(x-3)(y-1) = -4t \times \frac{2}{t} = (-8)$	M1 A1F	4	Their $(x, y), m$ Ft on (x, y) and m
(0)	-	AII	_	Fron (x, y) and m
(c)	$x - 3 = -4t \qquad y - 1 = \frac{2}{t}$	M1		PI
	$(x-3)(y-1) = -4t \times \frac{2}{} = (-8)$	M1		Attempt to eliminate t
		A1	3	AG convincingly obtained
	Total		11	
6(a)	$\cos 2x = 2\cos^2 x - 1$	B1B1	2	

	Total		7	
	$=\frac{\pi}{4}$	M1A1F	5	Use limits. Ft on integer a.
	$\frac{1}{2} \int_{0}^{\frac{\pi}{2}} \cos 2x + 1 dx = \left[\frac{1}{4} \sin 2x + \frac{x}{2} \right]_{0}^{\frac{\pi}{2}}$	A1 A1		
(b)	$\cos^2 x = \frac{1}{2}(\cos 2x + 1)$	M1		Attempt to express $\cos^2 x$ in terms of $\cos 2x$
6(a)	$\cos 2x = 2\cos^2 x - 1$	B1B1	2	

8(a)	$\int \frac{dx}{dx} dx = \int -2dt$			
	$\int \frac{1}{\sqrt{x-6}} dx = \int -2dt$	M1		Attempt to separate and integrate
	$\int \frac{dx}{\sqrt{x-6}} dx = \int -2dt$ $2\sqrt{x-6} = -2t + c$ $t = 0 x = 70 \Rightarrow c = 16$	A1A1		c on either side
	$t = 0$ $x = 70$ \Rightarrow $c = 16$	m1A1F		Follow on c from sensible attempt at integrals $\left(\sqrt{\text{not ln}}\right)$ CAO (or AEF)
	$t = 8 - \sqrt{x - 6}$	A1	6	CAO (or AEF)
(b)(i)	The liquid level stops falling/flowing/ at minimum depth	В1	1	
	$x = 22 \qquad t = 8 - \sqrt{22 - 6}$	M1		Use $x = 22$ in their equation provided there is a c
				Or start again using limits
				M1 $2\sqrt{64} - 2\sqrt{16} = \pm 2t$, A1 $t = 4$
	t = 4	A1	2	CAO
	Total		9	

7	$\int \frac{\mathrm{d}y}{y^2} = \int 6x \mathrm{d}x$	M1		Attempt to separate Either dx or dy in right place
	$-\frac{1}{y} = 3x^2 \left(+C\right)$	A1A1		$-\frac{1}{y}$; $3x^2$
	x = 2 $y = 1$ $C = -13$	M1 A1		Use (2,1) to find a constant. CAO
	$y = \frac{1}{13 - 3x^2}$	A1	6	CAO OE
	Total		6	

1(a)(i)
$$\frac{dx}{dt} = 2$$
, $\frac{dy}{dt} = -8t$

(ii) $\frac{dy}{dx} = \frac{dy}{dt} \frac{dt}{dx} = \frac{-8t}{2} = -4t$

(b) $m_T = -4$, $m_N = \frac{1}{4}$
 $x = 3$ $y = -3$
 $\frac{y - -3}{x - 3} = \frac{1}{4} \Rightarrow \frac{y + 3}{x - 3} = \frac{1}{4}$

(c) $t = \frac{x - 1}{2}$
 $y = 1 - 4\left(\frac{x - 1}{2}\right)^2$

M1

M1A1

M

5(a)	$x = 1, 5a^2 - a - 4 = 0$	M1		condone y for a
	$x = 1, 5a^{2} - a - 4 = 0$ $(5a+4)(a-1) = 0, a = 1$	A1	2	AG – be convinced, both factors seen
				or $a = -\frac{4}{5}$ or $1 \Rightarrow a = 1$
				A0 for 2 positive roots
				(substitute $(1, 1) \Rightarrow 5 = 5$ no marks)
(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} + 4$	B1B1		(Ignore ' $\frac{dy}{dx}$ = ' if not used, otherwise
		3.61		loses final A1)
	$=10xy^2 + 10x^2y\frac{dy}{dx}$	M1		attempt product rule, see two terms added
	dx	M1		chain rule, $\frac{dy}{dx}$ attached to one term only
		A1		condone 5 × 2 for 10
	$x = 1, y = 1$ $\frac{dy}{dx} + 4 = 10 + 10 \frac{dy}{dx}$	M1		two terms, or more, in $\frac{dy}{dx}$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{6}{9} = \left(-\frac{2}{3}\right)$	A1	7	CSO
	Alt (for last two marks)			
	$\frac{dy}{dx} = \frac{10xy^2 - 4}{1 - 10x^2y}$	(M1)		find $\frac{dy}{dx}$ in terms of x, y and substitute
				x = 1, $y = 1$ must be from expression with
				two terms or more in $\frac{dy}{dx}$
1	,			I
	$(1,1) \Rightarrow \frac{10-4}{1-10} = -\frac{6}{9}$ $\frac{y-1}{x-1} = -\frac{2}{3} (OE)$	(A1)		
(.)	$\frac{y-1}{z} = -\frac{2}{z} (OE)$	B1F	1	ft on gradient
(c)	x-1 3	2	•	ISW after any correct form
	Total		10	

8(a)	$\int \frac{1}{\sqrt{1+2y}} \mathrm{d}y = \int \frac{1}{x^2} \mathrm{d}x$	M1		attempt to separate and integrate
	$\int \frac{1}{\sqrt{1+2y}} \mathrm{d}y = k\sqrt{1+2y}$	m1		
	1(_)	A1		OE A1 for $\sqrt{1+2y}$ depends on both Ms
	$\sqrt{1+2y} = -\frac{1}{x}(+c)$	A1		A1 for $-\frac{1}{x}$ depends on first M1 only
	$x = 1, y = 4 \Rightarrow c = 4$	m1		+c must be seen on previous line
		A1F	6	ft on k and $\pm \frac{1}{x}$ only
(b)	$1 + 2y = \left(4 - \frac{1}{x}\right)^2$	m1		need $k\sqrt{1+2y} = x$ expression with $+c$ and attempt to square both sides
	$2y = 15 + \frac{1}{x^2} - \frac{8}{x}$	A1	2	terms on RHS in any order AG – be convinced CSO
	Total		8	